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. . . . . .

The goal and the context

Recently there was a lot of progress in computing partition functions of supersymmetric
QFTs in various space-time dimensions.

Some of these partition functions can be computed exactly which is a quite rare luxury.

When this happens the partition functions usually reduce to finite dimensional matrix
model integrals.

The integrands are given in terms of special functions: elliptic Gamma functions in some
of the 4d cases, hyperbolic Gamma functions in analogous 3d situations, etc.

An example of such a partition function in 4d is the supersymmetric index, S3 × S1,
relation of which to the hypergeometric elliptic integrals was pointed out in a beautiful
paper by Dolan and Osborn (2008) and was then further studied in a series of papers by
Spiridonov and Vartanov (and others).

The mathematical results regarding properties of these integrals (Rains,Spiridonov,· · · )
allow us to check, and in some cases give evidence for new, non trivial properties of
supersymmetric QFTs.
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. . . . . .

The goal and the context: 6=4+2

Recently there was an unrelated dramatic development in understanding CFTs in 4d with
extended supersymmetry, N = 2. (Gaiotto, Gaiotto-Moore-Neitzke,Argyres-Seiberg,...)

There exists a special 6d superconformal theory defined by its supersymmetry and some
discrete data (ADE). In string/M-theory the AN−1-type model of this kind is the theory
living on N M5-branes.

Compactifying this 6d theory down to four dimensions on a punctured Riemann surface
one obtains a wide variety of 4d superconformal theories labeled by the choice of the
Riemann surface. They are usually called theories of class S(ix).

Some of these 4d theories are usual gauge theories but others are less conventional
strongly-coupled SCFTs. Theories of class S are interrelated by a network of strong/weak
coupling dualities and RG flows.

One can compute some of the supersymmetric partition functions, eg the index, for this
new class of theories (even for the strongly-coupled ones).

Our goal in this talk will be to review some of the mathematics one encounters while
computing some of the partition functions for theories of class S.
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. . . . . .

Outline

“A1 symmetric province”

“AN−1 symmetric kingdom”

“A1 non-symmetric empire”

Comments
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. . . . . .

Notations

Elliptic Gamma function:

Γ (z; p , q) =
∞∏

i,j=0

1− pi+1qj+1z−1

1− piqjz
.

We use the short-hand notation

f (a0 a
±1
1 a±1

2 · · · ) =
∏

αi=±1

f (a0 a
α1
1 aα2

2 · · · ) .

Theta function is given by

θ(z; q) =
∞∏
ℓ=0

(1− qℓz)(1− q1+ℓz−1) .

Let us also define

κ ≡ Γ
(p q

t
; p , q

) ∞∏
ℓ=1

(1− qℓ)(1− pℓ)

We will always assume that

|p|, |q|, |
p q

t
| < 1 .
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A1 symmetric Province
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. . . . . .

A1 symmetric world: Riemann surfaces → Integrals

We are interested in a very specific class of functions which are labeled by the topological
information of a punctured Riemann surfaces.

By topological information of a Riemann surface, Cg, s , we mean the genus and the
number of punctures. We recursively define the following symmetric functions:

Zg, s(a1, a2, · · · , as ; t, p, q) .
Here symmetric means that the functions are invariant under inversions of any number of
the ai arguments.

The three punctured sphere, C0,3, corresponds to

Z0, 3(a, b, c; t, p, q) = Γ
(
t
1
2 a±1 b±1 c±1 ; p , q

)
.

a

b

c
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. . . . . .

Riemann surfaces → Integrals: the recursion

Given the functions corresponding to two Riemann surfaces, Cg1, s1 and Cg2, s2 , one can
obtain the function corresponding to Cg1+g2, s1+s2−2 by “gluing” the two surfaces along a
puncture

Zg1+g2,s1+s2−2(a1, · · · , as1−1, b1, · · · , bs2−1; t, p, q) = κ×∮
dz

4πiz

Γ
( p q

t
z±2; p , q

)
Γ (z±2; p , q)

Zg1,s1 (a1, ..., as1−1, z; t, p, q)Zg2,s2 (b1, ..., bs2−1, z
−1; t, p, q) .

Given the function corresponding to Cg, s one can obtain the function corresponding to
Cg+1, s−2 by gluing two punctures together:

Zg+1,s−2(a1, · · · , as1−2; t, p, q) =

∮
dz

4πiz

Γ
( p q

t
z±2; p , q

)
Γ (z±2; p , q)

Zg,s(a1, ..., as1−2, z, z
−1; t, p, q) .

a1

a2

a3

b1

b2

z z
−1

a1

a2

z

z
−1
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. . . . . .

Riemann surfaces → Integrals: consistency

Thus given a Riemann surface Cg,s one constructs a function corresponding to it
recursively by decomposing the surface into pairs-of-pants and then gluing them together.

In general, a given Riemann surface has different pairs-of-pants decompositions. So, is the
recursive procedure well defined and consistent?

It is!! (It is guaranteed to be the case if one believes the physics behind this construction)
To see this we have to check that the following crossing symmetry property is true:

Z0,4(a, b, c, d ; t, p, q) =

κ

∮
dz

4πiz

Γ
( p q

t
z±2; p , q

)
Γ (z±2; p , q)

Z0,3(a, b, z; t, p, q)Z0,3(c, d , z
−1; t, p, q)

= κ

∮
dz

4πiz

Γ
( p q

t
z±2; p , q

)
Γ (z±2; p , q)

Z0,3(a, c, z; t, p, q)Z0,3(b, d , z
−1; t, p, q)

z z
−1

d

c

a

b

=

z z
−1

d
a

b

c
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. . . . . .

Riemann surfaces → Integrals: consistency II

This equality was proven mathematically by Fokko van de Bult (2010):

∮
dz

4πiz

Γ
( p q

t
z±2; p , q

)
Γ (z±2; p, q)

Γ(t
1
2 a±1b±1z±1; p, q)Γ(t

1
2 c±1d±1z±1; p, q) =∮

dz

4πiz

Γ
( p q

t
z±2; p , q

)
Γ (z±2; p, q)

Γ(t
1
2 a±1c±1z±1; p, q)Γ(t

1
2 b±1d±1z±1; p, q) .
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. . . . . .

“Topological” definition of Zg, s?

We have quite explicitely defined the functions Zg, s using a certain pairs-of-pants
decomposition of a Riemann surface and argued that this construction is independnet of
the choice of such a decomposition.

Is there a way to write an expression for Zg, s which will be manifestly independent of the
choice of a pairs-of-pants decomposition?

Next we will derive such an expression.
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. . . . . .

Analytical properties of Zg, s

To answer the question posed on the previous slide we will study some of the analytical
properties of Zg, s({ai}si=1; p, q, t) in the parameters associated to the punctures, ai .

We consider Zg,s(a, b, c, · · · ; p, q, t) (with s > 3) and go to a pairs-of-pants
decomposition where we write this using Zg,s−2(z−1, c, · · · ; p, q, t) and
Z0,3(a, b, z; p, q, t).

Zg,s(a, b, c, · · · ; t, p, q) =

κ

∮
dz

4πiz

Γ
( p q

t
z±2; p , q

)
Γ (z±2; p , q)

Γ(t
1
2 a±1b±1z±1; p , q)Zg,s−2(z

−1, c, · · · ; t, p, q) .

z z
−1

b

c

a

Zg,s−2(z
−1, c, · · · ; p, q, t)

Γ(t
1

2 a±1b±1z±1; p, q)

Shlomo S. Razamat (IAS) C2 → CFT4 → Identities and Integ. models 19/7/2013 - Lorrentz Center 12 / 40



. . . . . .

Poles in a

∮
dz

4πiz

Γ
( p q

t
z±2; p , q

)
Γ (z±2; p , q)

Γ(t
1
2 a±1b±1z±1; p , q)Zg,s−1(z

−1, c, · · · ; t, p, q) .

We can identify some of the poles in a.

Varying a the location of poles in z of the integrand changes.

For special values of a pairs of poles in z pinch the integration contour and cause the
integral to diverge.

Such values of a (|a| < 1) are given by

a = am,n = t
1
2 p

m
2 q

n
2 , m, n ∈ N .
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. . . . . .

Residues in a

The residues can be easily computed since only finite number of poles in z contribute to
the singularity when a = am,n.

For example, when a = a0,0 = t
1
2 the residue is give by

Resa→a0,0Zg,s(a, b, c, · · · ; p, q, t) ∝ Zg,s−1(b, c, · · · ; p, q, t).

That is, this residue just gives the function corresponding to the Riemann surface with
one puncture less. (The proportinality factor is a simple function of p, q, and t only)

When a = a0,1 = t
1
2 q

1
2 the residue is give by

Resa→a0,1Zg,s(a, b, c, · · · ; p, q, t) ∝ S(0,1)(b) Zg,s−1(b, c, · · · ; p, q, t).

where the difference operator S(0,1)(b) is given by

S(0,1)(b) f (b) =
θ( t

q
b−2; p)

θ(b2; p)
f (b q1/2) +

θ( t
q
b2; p)

θ(b−2; p)
f (b q−1/2) .

Up to conjugation, this operator us just the basic “Hamiltonian”, H2, of the elliptic
Ruijsenaars-Schneider model.
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. . . . . .

Properties of the difference operators

On can compute the residues at all the poes a = am,n and define corresponding difference
operators S(m,n).

The operators S(m,n) are self-adjoint under the “gluing” measure.

The operator S(m,n) commute with each other.

The operators factorize
S(m,n) ∝ S(m,0) S(0,n) .

Operator S(0,n) is obtained from S(n,0) by exchanging p ↔ q.

Operators S(0,n) are polynomials of degree n in S(0,1).

(These properties follow from physical considerations and can be explicitly verified)
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. . . . . .

Crossing symmetry

Since our functions are invariant under crossing symmetry the difference operators satisfy
a very important equality when acting on them

S(m,n)(b)Zg,s(b, c, · · · ) = S(m,n)(c)Zg,s(b, c, · · · ) .

The two sides of the equality correspond to two different pairs-of-pants decompositions

a

b

c

a

b

c
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. . . . . .

Crossing symmetry II

For example we can act with S(0,1) on Z0,3(a, b, c; p, q, t),

S(0,1)(a)Z0,3(a, b, c; p, q, t) ∝ Γ

(√
t

q
a±1b±1c±1; p, q

)
× θ( t

q
a−2; p)θ(

√
t
q
ab±1c±1; p)

θ(a2; p)
+
θ( t

q
a2; p)θ(

√
t
q
a−1b±1c±1; p)

θ(a−2; p)

 .

One can check that the combination of theta functions on the second line is invariant
under permutations of a, b, and c.
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. . . . . .

Topological expression for Zg,s

Defining the eigenfunctions of the difference operators by ψλ and also defining the
eigenvalues as

S(1,0)(a) · ψλ(a; p, q, t) = Eλ(p, q, t)ψ
λ(a; p, q, t) ,

we (at least formally) expand the functions in ψλ and obtain (for brevity p, q, t are
dropped here)

S(1,0) Z0,3 =
∑
α,β,γ

Cαβγ Eα ψ
α(a)ψβ(b)ψγ(c) =

∑
α,β,γ

Cαβγ Eβ ψ
α(a)ψβ(b)ψγ(c)

=
∑
α,β,γ

Cαβγ Eγ ψ
α(a)ψβ(b)ψγ(c) .

This implies that the functions are diagonal in the basis of ψα (assuming the spectrum is
not degenerate)

Z0,3 =
∑
α

Cα ψ
α(a)ψα(b)ψα(c) = Γ

(
t
1
2 a±1b±1c±1; p, q

)
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. . . . . .

Topological expression for Zg,s II

By using the fact that the residue at a = t
1
2 removes a puncture the structure constants

Cα are also fixed,

C−1
α ∝ Res

a→t
1
2
ψα(a) .

Finally the function corresponding to a generic Riemann surface can be written as

Zg,s({ai}si=1; p, q, t) =
∑
λ

C2g−2+s
λ

s∏
ℓ=1

ψλ(aℓ) .

This result can be explicitly checked against the integral representations of the functions
at-least in some limits of the parameters. E.g., Macdonald limit: p = 0 (or q = 0), Schur
limit q = t (or p = t). In the latter limit the dependence on p (q) drops out.

At the full elliptic level this gives a concrete relation between the eigenfunctions of the
elliptic RS model and the integral representations of our functions.
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. . . . . .

Intermediate summary

We have defined a set of functions corresponding to Riemann surfaces, Zg,s({ai}; p, q, t).

These functions depend on A1 parameters, ai , corresponding to each puncture of the
surface, as well as on three additional parameters p, q, t.

A1 symmetric → Zg,s({ai}; p, q, t) invaraint under ai → 1/ai .

Two ways to write the expressions for the functions: first, as contour integrals of elliptic
Gamma functions, and second in terms of eigen-functions of elliptic RS models.

All this can be generalized to AN−1, though the generalization is quite non-trivial.
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. . . . . .

AN−1 symmetric Kingdom
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. . . . . .

AN−1 symmetric world: recursive definition

Similarly to the A1 case we associate functions to punctured Riemann surfaces.

However, now we have different species of punctured classified by partitions of N. Here is
an example of A25 puncture,

a

a

a

b

b

b

b

c d e

c d e

c

d e

f

g h

U (3)U (2) U (1) U (2)

d e

a

a

b

c

f

The parameters are constrained to satisfy (ab)5(cde)4f 2gh = 1. These can be thought of
as parametrizing the group S(U(2)U(3)U(1)U(2)).

For simplicity, we will discuss here only SU(N) and U(1) punctures. We will denote our

functions by Z
(N)
g,(s,n,... )

where s counts SU(N) and n U(1) punctures.
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. . . . . .

Basic example

The function corresponding to two SU(N) punctures (single row) and one U(1) puncture (one
column with N − 1 boxes and another one with a single box) is given by a product of elliptic
Gamma functions,

A3 A2 A1

Z
(N)
0,(2, 1,0,0,... )

(a, {bi}Ni=1, {ci}
N
i=1; t, p, q) =

N∏
i,j=1

Γ
(
t
1
2 (a bi cj )

±1 ; p , q
)
.

Here
∏N

i=1 bi =
∏N

i=1 ci = 1.
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. . . . . .

Gluing

Given the functions corresponding to two Riemann surfaces, Cg1,(s1,··· ) and Cg2,(s2,··· ),
one can obtain the function corresponding to Cg1+g2,(s1+s2−2,··· ) by “gluing” the two
surfaces along an SU(N) puncture

Zg1+g2,(s1+s2−2,··· )(a1, · · · , as1−1, b1, · · · , bs2−1, · · · ; t, p, q) =

κN−1

N!

∮ N−1∏
ℓ=1

dzℓ

2πizℓ

N∏
i ̸=j

Γ
( p q

t
zi/zj ; p , q

)
Γ
(
zi/zj ; p , q

) Zg1,(s1,... )(a1, ..., as1−1, z, . . . ; t, p, q)×

Zg2,(s2,... )(b1, ..., bs2−1, z
−1, . . . ; t, p, q) .

z−1z
a1

a2

b1

b2

a3
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. . . . . .

Consistency

As with the A1 case, we construct the functions for generic Riemann surfaces here by
making a pairs-of-pants decomposition and then gluing together three-punctured spheres.

Unlike the A1 case, here we have many different three-punctured spheres determined by
the types of the three punctures.

In particular there are many different consistency checks we have to perform: all the
four-punctured spheres should be crossing symmetry invariant.

For example:

=
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. . . . . .

Consistency example

Gluing together two three-punctured spheres with two SU(N) punctures and a U(1)
puncture we defined above, we obtaine an AN−1 generalization of the identity for A1:

∮ N−1∏
i=1

dzi

2πizi

N∏
i ̸=j

Γ
( p q

t
zi/zj ; p , q

)
Γ
(
zi/zj ; p, q

) N∏
i,j=1

Γ(t
1
2 (abizj )

±1; p, q)Γ(t
1
2 (cdiz

−1
j )±1; p, q) =

∮ N−1∏
i=1

dzi

2πizi

N∏
i ̸=j

Γ
( p q

t
zi/zj ; p , q

)
Γ
(
zi/zj ; p, q

) N∏
i,j=1

Γ(t
1
2 (cbizj )

±1; p, q)Γ(t
1
2 (adiz

−1
j )±1; p, q) .

Checked this in expansion in the parameters.
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. . . . . .

I have not told you however what the functions associated to the general three-punctured
spheres are:

This is the main physically interesting question we want to answer!

Physics-wise general three-punctured spheres correspond to complicated
(strongly-coupled) objects.
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. . . . . .

More constraints on the functions

To answer the question posed on the previous slide one has to provide more information
about the functions.

For general AN−1 such information is provided by specifying some relations between
functions associated to Riemann surfaces with different numbers of punctures.

For example, in the A2 case the single relation sufficient to fix all the functions is

Z0,(2,2)(a, b, z, y; p, q, t) =

κ

∮
du

2πiu

Γ( pq
t
u±2; p, q)Γ(t

1
2 u±1

(
a
b

)± 3
2 ; p, q)

Γ(u±2; p, q)
Z0,(3,0)({

√
ab

u
,
√
abu,

1

ab
}, z, y; p, q, t)

This constraint can be actually solved!! (Spiridonov, Warnaar - 2004). (The
left-hand-side can be obtained by gluing two Z0,(2,1).) One can obtain explicit contour
integral expression for Z0,(3,0) and check that all the crossing symmetries are satisfied and
thus the construction of the A2 functions is consistent.

Z0,(3,0) has three SU(3) factors but the symmetry is actually enhanced to E6.

Similar constraints can be written down systematically for higher rank cases.
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. . . . . .

Some spheres with exceptional symmetris

A2 three-punctured sphere with E6 symmetry

A3 three-punctured sphere with E7 symmetry, and A5 three-punctured sphere with E8

symmetry
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. . . . . .

Topological expressions for the AN−1 case

As we did for A1 we can seek for a more topological description of the functions
Zg,(s,n,... ).

One can generalize in a straightforward way the poles/residues analysis we have done
there.

Consider the following pairs-of-pants decomposition of a generic Riemann surface

Zg,(s,n,... )(a, b, c, · · · ; t, p, q) =
κN−1

N!

∮ N−1∏
i=1

dzi

2πizi

N∏
i ̸=j

Γ
(

p q
t

zi
zj
; p , q

)
Γ
(

zi
zj
; p , q

) ×

N∏
i,j=1

Γ(t
1
2 (abizj )

±1; p , q)Zg,(s,n−1,... )(z
−1, c, · · · ; t, p, q) .

a

c

z−1z

b
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. . . . . .

Poles and residues in a

We look for pole in a. A class of such poles is located at

a = am,n = t
1
2 p

m
N q

n
N , m, n ∈ N .

The residues again are easily computed. For example, the residue ate a0,1 is given by

Resa→a0,1Zg,(s,n,... )(a, b, c, · · · ; p, q, t) ∝ S(0,1)(b) Zg,(s,n−1,... )(b, c, · · · ; p, q, t).

where the difference operator S(0,1)(b) is given by

S(0,1)(b) f (b) =

∏
i ̸=j

Γ
(
tbi/bj ; p, q

) H2(b)

∏
i ̸=j

Γ
(
tbi/bj ; p, q

)−1

f (b) .

Here H2(b) is the basic “Hamiltonian” of the elliptic RS model.
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. . . . . .

Topological expressions

Exploiting crossing symmetry and all the constraints, after the dust settles, we can write
the following expressions for the functions.

The functions corresponding to Riemann surfaces with only SU(N) punctures are given by

Zg,(s,0,... ) ∼
∑
λ

∏s
ℓ=1

(∏N
i ̸=j Γ(tb

(ℓ)
i /b

(ℓ)
j ; p, q)

)
ϕλ(b

(ℓ); p, q, t)

ϕλ(t
1−N
2 , · · · , t

N−1
2 ; p, q, t)2g−2+s

.

Here ϕλ are eigenfunctions of the elliptic RS model and
(∏N

i ̸=j Γ(tbi/bj ; p, q)
)
ϕλ = ψλ are orthonormal

eigenfunctions of S(m,n). We can explicitly check in degeneration limits where the
eigenfunctions are explicitly known that the above agrees with other, integral,
representations of the functions.
In case we have one U(1) puncture and two SU(N) punctures the function is given by a
product of 2N2 elliptic Gamma functions and has the following “topological” expression:

Z0,(2,1,... ) ∼
N∏
i ̸=j

Γ(tb
(ℓ)
i /b

(ℓ)
j ; p, q)

2∏
ℓ=1

 N∏
i ̸=j

Γ(tb
(ℓ)
i /b

(ℓ)
j ; p, q)

 ×

∑
λ

∏2
ℓ=1 ϕλ(b

(ℓ); p, q, t)

ϕλ(t
1−N
2 , · · · , t

N−1
2 ; p, q, t)

ϕλ({t
2−N
2 a, · · · , t

N−2
2 a, a1−N}; p, q, t) .

Such expressions can be systematically written for functions corresponding to generic
Riemann surfaces with generic punctures.
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. . . . . .

A1 non-symmetric Empire
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. . . . . .

The A1 construction can be generalized in yet another way.

We introduce an integer positive parameter r . The case of r = 1 is the one we discussed
so far.

Each puncture on the Riemann surface is labeled now by an SU(2) parameter ai and an
integer mi defined mod r . We are looking for functions associated to Riemann surfaces
with this data, Zg,s({aℓ,mℓ}sℓ=1; p, q, t). The functions are not symmetric for general mi .

A starting point is the function corresponding to a three-punctured sphere:

Z0,3({aℓ,mℓ}sℓ=1; p, q, t) =
(p q

t

) 1
4

∑
si=±1([

∑3
ℓ=1 sℓmℓ]r−

([
∑3

ℓ=1 sℓmℓ ]r )
2

r
)
×

∏
sℓ=±1

Γ(t
1
2 p[

∑3
ℓ=1 sℓmℓ]r

3∏
ℓ=1

a
sℓ
ℓ ; pq, pr )Γ(t

1
2 qr−[

∑3
ℓ=1 sℓmℓ]r

3∏
ℓ=1

a
sℓ
ℓ ; pq, qr )

{a1, m1}

{a3, m3}

{a2, m2}
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. . . . . .

Gluing

The gluing is also modified. Given the functions corresponding to two Riemann surfaces,
Cg1, s1 and Cg2, s2 , one can obtain the function corresponding to Cg1+g2, s1+s2−2 as before

Zg1+g2,s1+s2−2({ai ,ma
i }

s1−1
i=1 , {bi ,mb

i }
s2−1
i=1 ; t, p, q) ∝

[r/2]∑
n=0

IV0 (p, q, t, n)

∮
dz

4πiz

Γ( pq
t
p[±2n]r z±2; pq, pr )Γ( pq

t
qr−[±2n]r z±2; pq, qr )

Γ(p[±2n]r z±2; pq, pr )Γ(qr−[±2n]r z±2; pq, qr )
×

Zg1,s1 ({ai ,m
a
i }

s1−1
i=1 , {z, n}; t, p, q)Zg2,s2 ({bi ,m

b
i }

s2−1
i=1 , {z−1, [−n]r}; t, p, q) .

The crossing symmetry can be checked to hold (it was done in some limits).
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. . . . . .

Difference operators

We can repeat again the analysis of poles and residues.

The residues are given again by difference operators. However, now they take the
schematic form

Resa→a∗Zg,s({a, 0}, {b,m}, · · · ) ∼ (On
m)a∗ (b,m)Zg,s−1({b, n}, · · · ) .

In general all the components of the matrix (On
m)a∗ are non-zero.

In some limits however these deifference operators simplify. One such limit is taking
p → 0 (Macdonald). Here the difference operators are proportional to δnm. For example
the operator computing the basic non-trivial residue is schematically given by

(On
m)

a∗=t
1
2 q

r
2
∼ K (Y1 + Y2) K

−1 .

Here K is a simple product of elliptic Gamma functions and Yi s are A1 Cherednik
difference operators.

The eigenfunctions here are given in terms of non-symmetric Macdonald polynomials and
our functions are naturally expressible in terms of these.

All these has a “straightforward” generalization to AN−1 case.
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. . . . . .

Comments
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. . . . . .

Back to Physics

The functions Zg,(s,n,... ) in the symmetric “kingdom” are superconformal indices, aka

twisted supersymmetric partition function on S3 × S1, of theories of class S labeled by the
corresponding Riemann surface.

The functions Zg,(s,n,... ) in the non symmetric “empire” are lens space indices, aka

twisted supersymmetric partition function on S3/Zr × S1, of theories of class S labeled by
the corresponding Riemann surface.

Let us stress again that most of the theories in class S are strongly-coupled meaning that
a priori direct computations for them are not possible. However, by exploiting dualities (=
extra constraints on the functions) and certain RG flows (= the residue calculus) one can
fix their indices.

The indices have physical meaning and thus have to be consistent with what we expect
from the theories on physical grounds.

And they are. (Eg symmetry enhancements, spectrum of protected operators, constraints,
dualities,...)
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Some References

The index of theories of class S was discussed in a series of papers:

I A1 - Gadde, Pomoni, Rastelli, SR (2009)
I A2 - Gadde, Rastelli, SR, Yan (2010)
I AN−1 in Macdonald limit - Gadde, Rastelli, SR, Yan (2011x2)
I AN−1 and difference operators - Gaiotto, Rastelli, SR (2012)
I N = 2 lens index (definition) - Benini,Nishioka,Yamazaki(2011)
I A1 lens index in “Schur” limit - Alday, Bullimore, Fluder - (2013)
I AN−1 lens index and difference operators - SR,Yamazaki (2013)
I More on AN−1 index and exceptional symmetries - Gaiotto,SR (2012)
I Dn index - Lemos, Peelaers, Rastelli (2013); Mekareeya,Song,Tachikawa(2012)
I Index and exceptional instantons - Hanany,Mekareeya,SR(2012); Keller,Song (2012)
I More related topics - Spiridonov,Vartanov(2010); Nishioka,Tachikawa,Yamazaki(2011); Tachikawa(2012);

SR(2012); Beem,Gadde(2012); Gadde,Maruyoshi,Tachikawa,Yan(2013);
Maruyoshi,Tachikawa,Yan,Yonekura(2013); Gadde,Gukov(2013);

I . . .
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. . . . . .

Hopefully there will be fruitful interactions between the more QFT oriented and the more Math
oriented communities

Thank You!!
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